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HIGHLIGHTS 

•	 Controversial luminescent centers and edge states in low-dimensional perovskites were summarized.

•	 Evaluated experimental evidences and discussed the root cause for challenges and controversies.

•	 New experimental techniques were suggested to resolve the controversies and identify the nature of luminescent centers.

ABSTRACT  With only a few deep-level defect states having a high for-
mation energy and dominance of shallow carrier non-trapping defects, the 
defect-tolerant electronic and optical properties of lead halide perovskites 
have made them appealing materials for high-efficiency, low-cost, solar 
cells and light-emitting devices. As such, recent observations of appar-
ently deep-level and highly luminescent states in low-dimensional per-
ovskites have attracted enormous attention as well as intensive debates. 
The observed green emission in 2D CsPb2Br5 and 0D Cs4PbBr6 poses an 
enigma over whether it is originated from intrinsic point defects or simply 
from highly luminescent CsPbBr3 nanocrystals embedded in the otherwise 
transparent wide band gap semiconductors. The nature of deep-level edge 
emission in 2D Ruddlesden–Popper perovskites is also not well under-
stood. In this mini review, the experimental evidences that support the 
opposing interpretations are analyzed, and challenges and root causes for 
the controversy are discussed. Shortcomings in the current density functional theory approaches to modeling of properties and intrinsic 
point defects in lead halide perovskites are also noted. Selected experimental approaches are suggested to better correlate property with 
structure of a material and help resolve the controversies. Understanding and identification of the origin of luminescent centers will help 
design and engineer perovskites for wide device applications.
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1  Introduction

Lead halide perovskites have provided us not only a long-
awaited material platform to realize the dream of high-effi-
ciency solar cells and many other optoelectronic devices, 
but also a wide range of structures to explore unusual fun-
damental sciences [1–5]. Depending on spatial configura-
tions, lead halide octahedrons can form structures from 
three-dimensional (3D) all the way to 0D perovskites [6]. 
While still not completely understood, the superior opto-
electronic properties of perovskites are believed to originate 
from their immunity to defects and lack of non-radiative 
deep-level traps, which have made them ideal materials for 
high-efficiency low-cost solar cells and many other optoe-
lectronic devices [1–5, 7]. This is another reason why recent 
observations of possible new types of luminescent states 
in low-dimensional perovskites are surprising; in particu-
lar, they have been used for higher efficient solar cells and 
even brighter light-emitting diodes [6, 8–18]. Such appar-
ent deep-level luminescent centers have been observed in 
2D CsPb2Br5 [19–24] and 0D Cs4PbBr6 [11, 15, 16, 25, 
26]. Because of their optical property similarities to those 
of CsPbBr3 [27–29], the emission is believed to originate 
from embedded CsPbBr3 nanocrystals [15, 16, 30–36]. But 
many other researchers attribute it to intrinsic point defects 
because no CsPbBr3 nanocrystals have been found in their 
emissive samples [11, 25, 26]. The debates on the origin 
of Cs4PbBr6 are especially hot, as seen from four recent 
articles which acknowledge the controversy but are inclined 
to support one over the other [15, 16, 25, 26]. Similar deep-
level luminescence centers have also been observed in low-
dimensional organic–inorganic metal halide materials with 
better pronounced morphological dimensionality [37, 38] 
than that in Cs–Pb–Br system. The study of luminescence 
centers in structurally simpler all-inorganic lead halide 
perovskites, however, is expected to be instructive for fur-
ther understanding the origin of these centers in all types 
of metal halide perovskites. As perovskites bring us more 
interesting properties and have found wide device applica-
tions, it is essential to understand the nature and mechanism 
for these luminescent centers.

In this mini review, the experimental evidences that 
support the opposing interpretations of the luminescence 
centers in Cs–Pb–Br system are analyzed, and challenges 
and root causes for the controversy are discussed. Selected 

experimental approaches are suggested to better correlate 
property with structure of a material and help resolve the 
controversies.

2 � Defects and Inclusions in Cs–Pb–Br System 
Rooted in the Ternary Phase Diagram

The perovskite-like compounds in Cs–Pb–Br system, 
CsPbBr3, CsPb2Br5 and Cs4PbBr6, can be easily synthe-
sized via solution process or melt-grown [11, 19, 34, 39–42]. 
The possibility of the different phase coexistence is well 
expected, and the compounds are stable within narrow 
chemical potential ranges as shown by recent density func-
tional theory (DFT) simulations [26].

The ternary phase diagram of the Cs–Pb–Br system 
shown in Fig. 1b demonstrates that the three different per-
ovskite-like structures can be produced using only CsBr and 
PbBr2 precursors. The different phases in Cs–Pb–Br system 
are grown by varying the precursor ratio (CsBr: PbBr2). As 
shown in Ref. [43], slight change of the crystal growth con-
ditions and controlled precursor ratios can produce the low-
dimensional phases CsPb2Br5 and Cs4PbBr6.

The 3D perovskite CsPbBr3 is the only compound in 
Cs–Pb–Br system that produces inherent green PL emis-
sion. This perovskite material was found unstable in mois-
ture environment, and its instability has been used success-
fully to transform it into the lower dimension but stable 
phases CsPb2Br5 [20, 23] and Cs4PbBr6 [44] in water envi-
ronment. The water-induced transformation of CsPbBr3 
into CsPb2Br5 occurs in a sequential dissolution–recrys-
tallization process under PbBr2-rich conditions [20]. Thus, 
synthesized CsPb2Br5 emits green photoluminescence (PL) 
with high PL quantum yield [20], but another approach 
using water was capable of growing non-emissive single 
crystals [23]. These observations hint that the green PL 
in CsPb2Br5 is likely due to highly luminescent CsPbBr3 
nanocrystal remnants.

Zhang et al. [44] have grown successfully a millimeter-
sized Cs4PbBr6 bulk single crystal in concentrated CsBr 
aqueous solution that lacks green luminescence emis-
sion [44]. In the same work, they also demonstrate that 
vacuum annealing treatment activates green PL in origi-
nal nongreen-luminescent Cs4PbBr6 crystals, which was 
attributed to the possible formation of CsPbBr3. A revers-
ible phase transformation between CsPbBr3 and CdPb2Br5 
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nanosheets under intense laser light has been demonstrated 
in Ref. [45]. Therefore, the narrow phase stability regions 
in the ternary phase diagram and the possibility of par-
tially reversible phase transformations strongly support the 
expectations for foreign phase inclusions in the Cs–Pb–Br 
compounds.

2.1 � Luminescent State in 2D Wide Bandgap CsPb2Br5

CsPb2Br5 is a layered lead halide structure with Pb-Br 
framework separated by Cs layers (Fig. 2a). 2D CsPb2Br5 
has also attracted a lot of attention recently due to many 
conflicting reports on its luminescence although it was syn-
thesized and studied long ago [41, 46]. Zhang et al. [21] 
were the first to report the beneficial effect of CsPb2Br5 to 
3D all-inorganic perovskite CsPbBr3: the attachment of 

CsPb2Br5 nanoparticles to CsPbBr3 nanocrystals enhanced 
PL of CsPbBr3 by several folds and external quantum effi-
ciency of CsPbBr3 light-emitting diodes (LEDs) by 50%. 
Figure 2b, c shows that more than 90% of CsPbBr3 are 
covered by CsPb2Br5 nanoparticles, but the PL and PLQY 
of CsPb2Br5/CsPbBr3 are nearly the same as those of pure 
CsPbBr3 nanocrystals. Figure 2d, e shows that these nan-
oparticles are not single phase, and high-resolution TEM 
reveals that they are CsPb2Br5/CsPbBr3 nanocomposites 
with dark smaller CsPb2Br5 nanocrystals attached to larger 
CsPbBr3 nanoparticles [21].

Shortly after that, Wang and co-workers reported nearly 
90% quantum efficiency of pure CsPb2Br5 nanoplatelets 
and subsequently expanded their emission wavelength to 
whole visible spectrum using ion exchange with I and Cl 
[19] (Fig. 3). Note that the purity of the initial CsPb2Br5 
and ion-exchanged nanocrystals was verified by XRD and 
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Fig. 1   Influence of CPB:CCB (CPB = PbBr2, CCB = CsBr = 0.04 M) on the composition and optical properties of Cs–Pb–Br nanocrystals. a Crys-
tal structure of Cs4PbBr6 (i), CsPbBr3 (ii) and CsPb2Br5 (iii). b Ternary phase diagram of Cs, Pb and Br elements. Cs4PbBr6, CsPbBr3 and 
CsPb2Br5 fall on the line connecting PbBr2 and CsBr in the diagram. c XRD results at different CPB:CCB. d PL and UV–Vis absorption spectra of 
the nanocrystals prepared at different CPB:CCB. The excitation wavelength for PL spectra is 365 nm. Reprinted with permission from Ref. [43]. 
Copyright 2018 Royal Society of Chemistry
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high-resolution TEM. Since then, many groups reported 
strong visible photoluminescence, high-efficiency LEDs, 
photodetectors and even lasing action in CsPb2Br5 micro-
plates [20, 47–54]. Highly luminescent CsPb2Br5 nanow-
ires with mixed halides are also synthesized recently [55].

Despite numerous reports, the claim of highly lumines-
cent CsPb2Br5 has been met with skeptics. Li et al. [22] 
synthesized CsPb2Br5 nanosheets from CsPbBr3 nanocubes. 
They have found that as the reaction goes on, both absorp-
tion and PL near 520 nm disappear, and the final product of 
CsPb2Br5 nanosheets displays no PL at all (Fig. 4). They also 
performed DFT simulation. The results (Fig. 4c, d) agree 
with the observation that CsPb2Br5 is an indirect wide band 
gap semiconductor [22].

The non-emissive nature of CsPb2Br5 can be best veri-
fied from transparent large-sized sheets in Fig. 5a, b [12, 
13]. Emissive macro- or micro-CsPb2Br5 typically exhibits 
a characteristic yellow color as shown in Fig. 3a. Different 

colors of CsPb2Br5 sheets in Fig. 5b are due to their thick-
ness-dependent optical interference under ambient or 
white light. As CsPb2Br5 can be produced by converting 
CsPbBr3 particles, CsPbBr3 particles can be recovered 
from CsPb2Br5 as well. Figure 5c shows the evolution of 
XRD patterns when high-purity CsPb2Br5 (black) was 
annealed at 220 °C (red) and 400 °C (blue). As the anneal-
ing temperature increases, X-ray pattern of CsPbBr3 par-
ticles begins to appear. This observation is also confirmed 
by TEM. Figure 5d, e shows CsPbBr3 particles attached on 
CsPb2Br5 in sample annealed at 400 °C. The change can 
also be seen in the PL spectra. The redshift of the PL band 
with annealing temperature is due to increasing size of 
CsPbBr3 particles [14]. Clearly, embedded CsPbBr3 parti-
cles in CsPb2Br5 can be a source for green PL emission in 
otherwise non-emissive pure CsPb2Br5. However, the same 
group has changed their mind and considered green emis-
sion as an intrinsic property of CsPb2Br5 after synthesizing 
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is Å. Reprinted with permission from Ref. [22]. Copyright 2016 Royal Society of Chemistry. b The percentage of the CsPbBr3 nanocrystal 
being covered by CsPb2Br5 nanoparticles and their PL quantum yield (PLQY). c Absorption and PL spectra of CsPb2Br5/CsPbBr3 composites. 
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and analyzing green emissive CsPb2Br5. Due to this reason, 
the mechanism for the green emission in CsPb2Br5 remains 
controversial. Many groups are aware of this controversy 
but are not able to support either of these two opposing 
claims [56–58].

2.2 � Luminescent State in 0D Wide Bandgap Cs4PbBr6 
Perovskite

In Cs4PbBr6, PbBr6 octahedrons are isolated by surrounding 
Cs ions and each octahedron behaves as a single molecu-
lar quantum dot (Fig. 6a inset), so Cs4PbBr6 is called 0D 
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from Ref. [19]. Copyright 2016 Wiley–VCH
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perovskite [15]. On the other hand, the crystallization of 
Cs4PbBr6 in a structure with translational symmetry and 
fixed orientation of PbBr6 octahedrons to each other clearly 
indicate that the spacing between PbBr6 is not enough to 
completely deactivate the interaction between them [16]. 
These interactions are better suppressed in the organic 0D 
metal halide hybrids [59, 60], which are closer to a quan-
tum dot material. DFT calculations of an isolated Cs4PbBr6 
structure, however, yield an energy gap close to those of bulk 
Cs4PbBr6 [61], which justifies the assignment of Cs4PbBr6 
to 0D materials. Specifically, Cs4PbBr6 has attracted a lot of 
attention because of the high PL quantum efficiency reported 
in Ref. [11]. Figure 6 shows that Cs4PbBr6 also emits green 
light with a wavelength very close to that of CsPbBr3, but the 
PLQY is more than two orders of magnitude larger. Because 
Cs4PbBr6 is purified by dissolving CsPbBr3 contamination 
using dimethyl sulfoxide (DMSO), and no X-ray of CsPbBr3 
is detected, the green emission is considered as an intrin-
sic property of Cs4PbBr6 [11]. Such strong green emission 
was initially attributed to the high exciton binding energy in 

isolated PbBr6 [11]. Later, an alternative explanation sug-
gests that the green emission is due to a phonon-assisted 
transfer of photoexcited electrons to a charge-transfer state of 
Pb ions in the host lattice distorted by atomic displacements 
involved in the phonon [62]. Recently, the group published a 
series of papers and attributed the PL to intrinsic Br vacan-
cies [26, 62–65]. Their theory has been supported by DFT 
calculations [26, 63] and other groups [25, 66–69].

The claim that the green PL emission is an intrinsic 
property of Cs4PbBr6 is also supported by the synthesis of 
large-sized single crystals (Fig. 7a, b). However, many other 
researchers do not agree with their observations and explana-
tion [30–32, 44, 71]. Because the emission wavelength over-
laps with that of CsPbBr3 very well, it has been believed that 
the strong PL originates from embedded CsPbBr3 nanocrys-
tals. This alternative idea of non-intrinsic luminescent prop-
erty is supported by the synthesis of non-emissive Cs4PbBr6, 
both large-sized single crystals (Fig. 7c) and nanocrystals 
[30, 44, 62, 71]. Opposing simulations also show that the Br 
vacancies cannot produce such deep-level defect states [5, 
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15, 16, 33]. As the strongest experimental evidences, both 
sides show high-resolution TEM images. Figure 7d–g com-
pares TEM images of emissive and non-emissive Cs4PbBr6 
nanocrystals. Both types of nanocrystals exhibit clean single 
crystal structure, and no CsPbBr3 inclusion is found. On the 
other hand, CsPbBr3/Cs4PbBr6 nanocomposites have been 
frequently synthesized and observed, and they exhibit strong 
PLQY as expected [16, 34, 70, 72].

2.3 � Bright Edge States in 2D Ruddlesden–Popper 
(R–P) Perovskites

Corner-sharing PbBr6 octahedrons as those in CsPbBr3 are 
definitely the structures that can produce visible PL. This 
has also been confirmed by the PL properties of two-dimen-
sional (2D) R–P lead halide perovskites [10]. The observed 
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crystal edge bright PL emission, different from that of the 
bulk one, in these materials is very instructive with demon-
strated effects of PbBr6 framework relaxation at the surface 
of perovskite crystals.

A surface is an inevitable termination of periodic lattices 
of any single crystals even when we are only interested in 
their bulk properties. For 2D materials, edges will become 
surfaces and introduce surface defects as they terminate their 
2D expansion. A surface will typically introduce detrimen-
tal or unwanted effects to the bulk materials so that surface 
treatment or passivation is crucial for the desired function 
or performance of materials. Because of this reason, it was 

very surprising that the edges of 2D organic–inorganic per-
ovskites provide a deep-level luminescent center that also 
enhances the performance of solar cells [10].

In 2017, Blancon et al. [10] reported that 2D R–P perovs-
kites (BA)2(MA)n−1PbnI3n+1 exhibit a low energy photolu-
minescence in the edge of exfoliated flakes when n is 3 or 
larger (Fig. 8a–c). Their emission energy is ~ 300 meV below 
the band gap of (BA)2(MA)n−1PbnI3n+1. Unlike conventional 
deep-level defect states, they can quickly dissociate photoex-
cited excitons and prevent electron–hole from non-radiative 
recombination [10]. By fabricating 2D platelets vertically 
and having edges directly connected to the electrodes, the 
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bar is 10 μm. Reprinted with permission from Ref. [10]. Copyright American Association for the Advancement of Science
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researchers have demonstrated 12% efficiency of 2D perovs-
kite cells [10]. However, the nature of the edge states was not 
totally understood, and even their chemical composition and 
microscopic structure have not been experimentally identi-
fied in their initial report [10].

It was not until a year later that a theory paper was 
published and offered a model to explain the edge states 
[73]. The calculation shows that when n > 2, the strain 
caused by the interface between inorganic and organic 
spacers will be relaxed to the edge lattices, causing a large 

lattice distortion (Fig. 9a). The distortion is large enough 
to create new localized state with energy much lower than 
the band gap [73]. However, there is still no experimen-
tal confirmation of the lattice distortion on the edge. A 
related paper was just published and reports the effect of 
organic spacer on the distortion of inorganic lattice in the 
surface of monolayer R–P perovskites [74]. Figure 9b–e 
demonstrates the sensitivity of electronic band structure 
to the Pb-I lattices and surface lattice relaxation. The edge 
emission was just confirmed in a very latest work [75]. 
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But as shown in Fig. 9f–g [75], the edge emission is not 
due to the intrinsic strain; rather, it is induced by water 
molecules. Furthermore, the edge emission can also be 
observed when n = 2. Again, these are just experimental 
observations, and the underlying structure and mechanism 
are still not clear and require further research.

3 � Problems and Challenges in Revealing 
the Origin of Luminescence Centers 
in Lead Halide Perovskites

The current problems in identifying the origin of PL from in-
gap luminescence centers are due to relatively large incon-
sistency in the results of both computational simulations and 
experimental characterization of lead halide perovskites. The 
basic properties of lead halide perovskites and expected 
intrinsic point defects have been studied extensively by using 
DFT. The first attempts of calculating the band structure 
of lead halide perovskites using local density functionals 
(LDA) and generalized gradient approximation (GGA) as 
GGA-PBE produced band gap values in accordance with 
the experimental ones. The top of valence band in Cs–Pb–Br 
0D, 2D and 3D materials is composed of p-orbitals of Br 
with contribution from s-orbitals of Pb, whereas the bottom 
of conduction band is completely based on p-orbitals of Pb. 
Lead is a heavy metal known to possess strong spin–orbital 
coupling (SOC). The must-have inclusion of SOC in GGA-
PBE calculations, however, results in a strong underestimate 
of band gap values in these materials. This also influences 
significantly the energy calculations of the native point 
defects (vacancies, interstitials and antisites) and defect com-
plexes. The energy-level positions of different defects with 
respect to the band gap edges change with activating SOC. 
This makes quite dubious the assignment of certain defects 
as deep in-gap luminescence centers. The analysis of this 
problem has found its first solution in 2015 when Du [76] 
showed that the local density functionals used without SOC 
produce correct band gap values due to error cancelations 
[77], whereas inclusion of SOC involves self-interacting 
errors and requires the use of screened hybrid functionals 
as Heyd–Scuseria–Ernzerhof (HSE) to reproduce correctly 
both the band gap and the energy position of defects. Kang 
and Wang [5] presented the first complete calculations of the 
formation energy of all type point defects in CsPbBr3 using 

HSE + SOC. The formation energy of defects was calculated 
taking into account the Fermi energy and atomic chemical 
potentials of constituents [78, 79]. Although this work seems 
to deliver solid results, a few details are alarming and indi-
cate that it may not be the final word on solving problems of 
modeling defects in lead halide perovskites.

The HSE functional includes a portion of non-local Har-
tree–Fock (HF) exchange in addition to local GGA-PBE one. 
The HSE functional partitions the Coulomb operator for a 
pair of charges into two ranges: short (SR) =

[

1 − erf (�r)
]

∕r 
and long (LR) = erf (�r)∕r that are defined and controlled 
by the range-separation parameter ω set empirically to 
0.15 Bohr−1 in the so-called HSE03 [80] version and to 
0.11 Bohr−1 in the HSE06 version. HSE incorporates 25% 
SR HF exchange (mixing parameter, a = 0.25), no LR HF 
exchange, 75% SR and full LR PBE exchange, and 100% 
PBE correlation. Test calculations using HSE03 [80] with 
a = 0.25 and ω = 0.15 Bohr−1 have reproduced well the band 
gap of a large number of semiconductors [81], that is, HSE 
is believed to be a universal functional. The band gap of 
CsPbBr3, however, is calculated correctly using HSE + SOC 
only with HF exchange portion a set to 0.43 [5]. Recent 
extension of HSE + SOC to calculations of 2D CsPb2Br3 
and 3D Cs4PbBr6 shows that there are no universal HSE06 
parameters a and ω that produce the band gaps correctly for 
all Cs–Pb–Br compounds [26]. The band gap of CsPb2B5 
and Cs4PbBr6 is calculated to be close to the experimental 
one for a = 0.2 [26], that is, different from both a = 0.43 for 
CsPbBr3 and most importantly different from a = 0.25 of the 
original HSE06 that has been claimed to be a universal for 
correct calculations of band gaps in semiconductors. One 
yet unexplored path is to repeat these calculations with fixed 
original a = 0.25 in HSE functional and varying the screen 
parameter ω and then find a physical reason for different 
screening parameters in Cs–Pb–Br compounds.

The DFT results of defect formation energy calculations 
of CsPbBr3, CsPb2Br5 and Cs4PbBr6 and the defect energy 
levels with respect to the energy band gap in these com-
pounds are shown in Fig. 10 [26]. The defect formation 
energy was calculated in a similar way as in Ref. [5], but 
the results for some of the defects in CsPbBr3 are different 
in the two papers. No critical analysis has been done so far 
on whether this is the most reliable and realistic approach 
for calculations of the defect formation energy. Apart 
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from the supercell size-independent errors in these cal-
culations as the choice of DFT functional and the choice 
of exchange correlation potentials discussed above, there 
are a number of supercell size-dependent errors, e.g., in 
Ref. [82], that have not been explored yet in the Cs–Pb–Br 
compounds. There is a need for a more rigorous approach 
to defect property calculations for the Cs–Pb–Br system 
in accordance with analyses and prescriptions given in 
Ref. [83].

The origin of green PL in Cs4PbBr6 is attributed to Br 
vacancies, VBr (as in Ref. [26]). As shown in Fig. 10c, how-
ever, VBr (0/+ 1) cannot be involved in the green PL emis-
sion observed in CsPb2Br5. The only candidates for defect 
mediated PL in CsPb2Br5 are the antisites PbBr and CsBr. 
Another computational study of CsPb2Br5 [33], however, 
predicts the positions of unoccupied and occupied levels 
of VBr (0) to lay at ~ 0.25 and ~ 0.5 eV, respectively, below 
the conduction band edge. The puzzle of the very similar 
green PL in CsPb2Br5 and Cs4PbBr6 due to defects remains 
unsolved. These notes show the complexity involved in the 

modeling of Cs–Pb–Br compounds and their native point 
defects and the degree of confidence one may have in the 
DFT results.

The arguments in favor of green PL in CsPb2Br5 and 
Cs4PbBr6 due to CsPbBr3 nanocrystal inclusions are bet-
ter justified experimentally than those in support of native 
point defects. Indeed, the studies of CsPbBr3 absorption 
and emission spectra variation with nanocrystal size clearly 
show a quantum dot size effects with a PL peak position 
shift from 2.35 eV in bulk crystals to 2.7 eV in ~ 4-nm crys-
tal [28, 84].

The results in Fig. 11 show that typically observed green 
PL luminescence at 2.35–2.5 eV in CsPb2Br5 and Cs4PbBr6 
may well be due to CsPbBr3 nanocrystal inclusions in these 
wide band gap semiconductors. One way to move forward 
in revealing the nature of luminescence centers is to provide 
stronger experimental evidence on the nature of PL centers 
in Cs–Pb–Br system although this is also challenging as we 
discuss it below.
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4 � Designing Combined Experimental 
Characterization Approaches for Better 
Consistency

Structure–property relation is the major goal of materials 
science and engineering. Specifically for the Cs–Pb–Br 
system one of the important properties is the photolu-
minescence, while its structure is determined by XRD, 
TEM and Raman spectroscopy. The last one is an indirect 
structure-related technique. The major reasons for these 
structure–property controversies or challenges are the dif-
ference in probing length scale and sensitivity. XRD is an 
average technique and has relatively low phase detection 
sensitivity. It is sensitive to the minority phase domain 

size, which below a few hundred nanometers usually 
diminishes and broadens the related XRD peaks, whereas 
PL can be emitted even from quantum dots and single 
molecular inclusions. TEM can provide detailed atomic 
structures, but there are two major difficulties. The first is 
that the size of PL and TEM probes are orders of magni-
tude different. TEM can only probe a much smaller sam-
ple, on the order of 100 nm in size; however, micro-PL still 
require a micrometer-sized sample. The second reason is 
that perovskite-like materials are very sensitive to elec-
tron beams and can get damaged easily, so the structure 
of perovskite is hard to be studied and advanced low-dose 
TEM is needed [65].

Raman is a well-established and sensitive technique to 
identify a material. In addition, Raman is compatible with 
PL and requires a small sample amount, so Raman can 
serve both the structure determination and property related 
to PL. For instance, the non-resonant Raman scattering is 
structure related, but at resonance it may probe electronic 
states that concurrently take part in PL. Raman and PL 
have been separately used in characterizing the lumines-
cent centers, but they were only used for qualitative study, 
and a combined and calibrated Raman–PL has been miss-
ing. The key to such quantitative Raman–PL analysis is the 
calibrations of both Raman and PL using well-known ref-
erence materials. Note that PL is very sensitive to material 
quality, so a reference sample should be carefully chosen 
for the combined Raman and PL. For instance, CsPbBr3 
nanocrystals can have a PLQY of 60–90% [27–29], but 
the PLQY of CsPbBr3 micropowders can be as low as 
0.1%. CsPbBr3 nanocrystals should be used to confirm 
whether they are the source for green emission. So far, a 
successful application of combined Raman/PL mapping 
of the same sample area of CsPb2Br5 was reported in Ref. 
[23]. In that study, the Raman spectroscopy distinguishes 
the single crystalline part of CsPb2Br5 [77], which turned 
out to be non-emissive, from the polycrystalline part that 
produces green PL.

The optical absorption spectra of Cs–Pb–Br compounds 
can indicate indirectly, but not for certain, whether the 
samples are PL emissive or not. A promising alternative 
approach reported in Ref. [31, 85] uses TEM for structural 
characterization and energy loss spectroscopy (EELS) in 
the low-loss region as equivalent of optical absorption in 
CsPbBr3 and CsPbBr3/Cs4PbBr6. The results of TEM–EELS 
characterization of CsPbBr3/Cs4PbBr6 nanocrystals are 
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shown in Fig. 12. The main limitations of the EELS tech-
nique are the effect of sample thickness, relatively low sen-
sitivity and energy resolution in the low-loss region when 
compared to optical spectroscopy.

The ultimate technique for structure–property rela-
tion is combined TEM-PL on a single nanocrystal [86]. 
The Raman scattering from ultra-small amount of highly 
luminescence compounds could be too weak to be detect-
able. A major challenge is to avoid electron beam-induced 
damages to perovskites. High-resolution TEM imaging 
has been used by competing sides to support their argu-
ments, but no such combined study was reported. The 
observation of CsPbBr3/Cs4PbBr6 nanocomposites cer-
tainly cannot exclude possible defect luminescent states; 
although no apparent CsPbBr3 nanocrystal was found in 
some single crystals of emissive Cs4PbBr6, PL from the 
same nanocrystal was actually not demonstrated [19, 51, 
55]. More importantly, PL should be performed before and 
after TEM imaging to ensure no damage has occurred. To 
reveal the origin of edge states in R–P perovskites [10, 
75], the next step is to reproduce the reported results and 
further determine the factors that are responsible for the 
edge states. Besides the reported TEM and AFM [75], non-
invasive techniques such as Raman and FTIR should be 

used to identify the structural and chemical changes to the 
edge lattices [85, 87]. Note that nanometer scale versions 
of Raman and FTIR are already available to probe local 
structures [88, 89].

PL, Raman, XRD and TEM are passive techniques; new 
techniques that can apply external stimulus such as mechani-
cal, electrical, or magnetic force to probe the dynamic 
response of luminescent centers and distinguish point defect 
from CsPbBr3 nanocrystals are needed. The challenges and 
controversies in perovskites have also brought us a great 
opportunity to test new theory, develop new experimental 
techniques and eventually provide us new understanding and 
insight to develop and engineer better materials for a wide 
range of optoelectronic device applications.
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