Ultrathin bismuth oxyiodide nanosheets for photocatalytic ammonia generation from nitrogen and water under visible to near-infrared light

*Corresponding author.
E-mail addresses: jbao@central.uh.edu, jbao@uh.edu (J. Bao)

1. Introduction

Nitrogen fixation in nature using nitrogenase is an astonishing catalytic reaction for millions of years [1]. Artificial photosynthesis of ammonia using photocatalysts as a green and sustainable process has also attracted enormous attention [2]. For this purpose, many photocatalysts have been reported to reduce nitrogen to ammonia; however, they are either wide bandgap semiconductors that absorb ultraviolet light or have to use hole scavenger sacrificial reagents [3–6]. For example, Bi2O3 and BiO can reduce N2 without any organic sacrificial reagent under UV light (<435 nm, and <430 nm, respectively) [6,7], while graphitic carbon nitride (g-C3N4) is active under visible light, but requires sacrificial reagents [8,9]. The development of single photocatalysts that can generate ammonia from N2 and pure water utilizing visible and even near-infrared light turns out to be challenging [10]. It was not until last year Zhao et al. showed that doping TiO2 with copper can make it active even under near-infrared light [11]. Compared to photocatalytic solar water splitting, there are more material requirements for N2 fixation [2]. First, N2 reduction is a multi-electron charge transfer process as opposed to a single electron in the hydrogen evolution reaction (HER) [12,13]. Second, depending on different reaction routes, N2 fixation typically requires a higher reduction potential than HER [13], so many of water splitting photocatalysts are not active for N2 fixation [14].

In this work, we report a new photocatalyst that can generate ammonia from N2 and water without any sacrificial reagents under illumination from visible to near-infrared light. Ultrathin BiOI nanosheets were prepared via a surfactant assisted hydrothermal method. Unlike the macroscopic sheets, BiOI nanosheets are also active for overall photocatalytic water splitting. Our bandgap and band edge position characterizations by UV–Vis, photoluminescence, Mott–Schottky, and Kelvin probe revealed that the activity of BiOI nanosheets originates from their upshifted band edge positions.
edge positions, which makes its band edges aligned perfectly with water splitting and N2 reduction potentials. Furthermore, abundant native oxygen vacancies provide more active sites for adsorption and activation of nitrogen molecules on BiOI-NS surfaces.

2. Results and discussion

Ultrathin nanosheets (denoted as BiOI-NS) were synthesized by a surfactant (PVP) assisted hydrothermal method [15]. 1 mmol Bi(NO3)3 · 5H2O was first dissolved in a mixture of 30 mL ethylene glycol and 5 mL deionized water (DI) water, followed by adding a stoichiometric amount of KI to yield an orange solution. Subsequently, 200 mg polyvinyl pyrrolidone was added into the solution, and the resulting orange suspension was stirred vigorously for 1 h. The final solution was poured in a 40 mL teflon autoclave and placed in oven at 160 °C for 8 h. The resulting powder was washed and dried afterward. Powder X-ray diffraction was first used to examine the crystal structure of the resulting BiOI powder. The characteristic peaks at (110) and (102) in Fig. 1a confirm its layered tetragonal crystal structure despite differing in line width and intensity. In fact, these unique XRD patterns revealed the ultrathin nature of 2D BiOI nanosheets. The sharp line at (110) indicates a high crystal quality in the basal plane with an average size of 21.4 nm based on the Scherrer equation. The weak and broad out-of-plane peaks reflect extremely thin sheets of 2D structure. The missing (002) peak indicates that the thickness is beyond XRD detection. Based on the (102) peak, the thickness is limited to 3.5 nm, which is also confirmed by the atomic force microscopy image and height profile in Fig. S3. Transmission electron microscopy (TEM) image confirmed the shape and size of the ultrathin nanosheets. Low resolution TEM images in Fig. 1b shows that the lateral size of nanosheets is around 30–50 nm, high resolution TEM in Fig. 1c confirmed that NS are only a few layers thick, lattice fringe images in Fig. 1d and e suggest a high crystal quality of NS [16].

Photocatalytic N2 fixation tests were carried out by continuously flowing N2 into the aqueous suspension of BiOI-NS without sacrificial reagent. The concentration of ammonia in the solution was determined with the indophenol blue method [17,18] and was monitored each hour by taking out 2 mL of the solution. Under the white light irradiation from a xenon lamp, Fig. 2a shows that NH3 concentration in the solution increased linearly with time. Control experiments confirmed that the reaction was photocatalytic because blocking the light or replacing N2 with Ar totally suppressed the production of NH3 (Fig. 2a). Additionally, the BiOI-NS sample showed good stability under the light illumination after five cycles (Fig. 2b).

Because PVP contains nitrogen in its structure, it can interfere with ammonia generation and detection. To further confirm the photocatalytic reaction, we performed isotope labeling experiments using pure 15N2 and nuclear magnetic resonance (NMR) (Fig. S4). Proton NMR is a very sensitive method as it can distinguish 15N from 14N nuclei in the form of ammonium ion [19,20]. Fig. 2c shows the proton NMR results after using 14N2 and 15N2 gases as precursors for the nitrogen reduction reaction. The emergence of two characteristic peaks of 15NH4+ from the initial three peaks of 14NH4+ ions after using 15N2 gas confirmed that N2 was the source for photocatalytic ammonia generation [20,21].

Bismuth oxyhalides BiOXs (X = Cl, Br, and I) have been extensively used as photocatalysts for applications in pollutant removal, dye degradation and water splitting [22–25]. However, only in 2015, BiOBr was first reported to perform photocatalytic N2 fixation under visible light [14]. Soon after that, BiOXs attracted lots of attention due to their controllable bandgaps (3.2–1.8 eV) and energetic surface sites for nitrogen activation [4,5,14]. Among them, BiOCl is very well-suited for solar light harvesting thanks to its small energetic surface sites for nitrogen activation [4,5,14]. Ammonia was determined to be 50 nm for the sample prepared in water as solvent, and 20 nm for the sample prepared in ethylene glycol as the solvent. The photocatalytic experiments were performed at the same conditions. Fig. S6 shows that no ammonia was generated, so pristine BiOCl is not active for N2 fixation.

To resolve this discrepancy and understand the origin of the activity of our BiOI-NS, we synthesized two more BiOI samples (both labeled as pristine BiOI) using either water or ethylene glycol as a solvent and compared their activity with that of BiOI-NS. Fig. S1 shows their XRD and SEM, indicating their high crystal quality. It is shown that the diameter of the both pristine BiOI samples were around 4 μm, however, the thickness of the BiOI slabs along [002] was determined to be 50 nm for the sample prepared in water as solvent, and 20 nm for the sample prepared in ethylene glycol as the solvent. The photocatalytic experiments were performed at the same conditions. Fig. S6 shows that no ammonia was generated, so pristine BiOI is not active for N2 fixation.

To further confirm their huge difference in N2 fixation between BiOI-NS and pristine BiOI, we compared their activity for photocatalytic overall water splitting. It was quickly found that without Pt co-catalyst, both BiOI-NS and pristine BiOI are not active for overall water splitting. However, when decorated with Pt co-catalyst, BiOI-NS was able to split pure water into H2 and O2.
while pristine BiOI still remained inactive. Fig. 2d shows that the molar ratio of the hydrogen to oxygen is close to the ideal value of 2:1.

The different activities of BiOI for water splitting point to us that they may have different bandgaps and band edge positions, which are essential to the activity of any photocatalyst for both water splitting and N₂ fixation. As a first step, we compared their bandgaps because the change in bandgap will also result in the change in band edge positions. Fig. 3a and b shows UV–visible diffuse reflectance and the associated Tauc plot. It can be seen that they have a similar bandgap around 1.85 eV, very close to the reported values [16,30,31]. A slightly higher bandgap of BiOI-NS is due to its thinner sheets and the quantum confinement effect [27,32]. This small blueshift of absorbance is also confirmed with photoluminescence spectra in Fig. 3c. However, the photoluminescence as well as photoconductivity in Fig. 3d reveals a significant difference between BiOI-NS and pristine BiOI. BiOI-NS exhibits a much enhanced PL and photoconductivity, indicating a high crystal quality and longer lifetime of photo-excited electrons and holes [33,34], consistent with XRD and TEM evaluation.

The slightly higher bandgap and better crystal quality are certainly not enough to account for the activity of BiOI-NS, so we continue to employ two other techniques: Mott-Schottky and Kelvin probe to determine their Fermi levels (flat band potentials) and band edge positions [35,36]. As expected, Mott-Schottky plots in Fig. 4a reveals a big difference in their flat band potentials; while both BiOI-NS and pristine BiOI show positive slopes, indicating n-type semiconductors due to native oxygen vacancies [37,38]. The lower positive slope of BiOI-NS indicates that BiOI-NS has a higher concentration of oxygen vacancies, which is also confirmed by electron paramagnetic resonance (EPR) in Fig. 4b [39]. The negative shift of flat band potential of BiOI-NS to −0.12 V is significant as this will enable BiOI-NS to do HER and N₂ fixation. This negative shift of flat band potential or the upshift of the Fermi level is confirmed by the Kelvin probe in Fig. 4c. Considering the conduction band edge position (Vc) is −0.3 eV above the Fermi level for an n-type semiconductor [7,40], its approximate band edge positions vs. H₂O and N₂ redox potentials in Fig. 4d explain why BiOI-NS become suitable for both nitrogen fixation and water splitting.
The PVP oxygen bonding to BiOI can be significant because the scattered light was not considered. Therefore, the reduction in work function by PVP functionalization is general and can be applied to other materials such as gold and FTO in addition to BiOI, as shown in Fig. 5c [53]. Fig. 5b and d illustrate the attached PVP molecules and the associated dipoles on BiOI surfaces, which are responsible for the reduction of their work function compared to the PVP free BiOI–P.

Photocatalytic N₂ fixation under visible light still remains a challenge, and here we further demonstrate that BiOI-NS is active under visible to near infrared light. For this purpose, the ammonia generation rate was measured with monochromatic light. Under 633 nm and 660 nm lights (100 mW/cm²), the ammonia generation rate was measured to be 1.15 μmol g⁻¹ h⁻¹ and 0.8 μmol g⁻¹ h⁻¹, respectively. BiOI even exhibits photocatalytic activity under illumination of 700 nm light, making it near-infrared active although with a reduced efficiency (Fig. S7). Note that these efficiencies are under estimated because the scattered light was not considered. Previously, N₂ fixation under near-infrared light was achieved in copper doped TiO₂, but still its intrinsic bandgap is in the UV range [11]. N₂ fixation under longer wavelength (800 nm) light was also demonstrated using hot electrons from plasmonic gold nanorods, but it requires a sacrificial reagent [20,54].

3. Conclusion

In conclusion, we demonstrated a narrow band gap photocatalyst that can perform N₂ fixation under visible to near-infrared light without any sacrificial reagents. The activity of BiOI nanosheets is enabled by PVP surface modification which not only reduces the thickness of BiOI nanosheets, but also upshifts its band edge position. The surface engineering of narrow band gap semiconductors provides a new approach to the development of highly efficient photocatalysts for ammonia generation from water and nitrogen using renewable solar energy.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors gratefully acknowledge support from Welch Foundation (E-1728).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mtphys.2020.100293.

References

photocatalytic N\textsubscript{2} fixation of bismuth-rich Bi\textsubscript{2}O\textsubscript{3} nanosheets, ACS Appl. Mater. Interfaces 8 (2016) 27661–27668.

[18] S. Deev, IA. Khlyambradja, T.S. Shrestakova, V.N. Charushin, O.N. Chupakhin, N3I12 labeling and analysis of 13C-N\textsubscript{2} and 11H-N\textsubscript{2} couplings in studies of the structures and chemical transformations of nitrogen heterocycles, RSC Adv. 9 (2019) 26856–26879.

