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Abstract
We report the observation of a strong 2D band Raman in twisted bilayer graphene (tBLG) with
large rotation angles under 638 nm and 532 nm visible laser excitations. The 2D band Raman
intensity increased four-fold as opposed to the two-fold increase observed in single-layer
graphene. The same tBLG samples also exhibited rotation-dependent G-line resonances and
folded phonons under 364 nm UV laser excitation. We attribute this 2D band Raman
enhancement to the constructive interference between two double-resonance Raman pathways,
which were enabled by a nearly degenerate Dirac band in the tBLG Moiré superlattices.
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1. Introduction

Graphene has been the focus of attention since the first suc-
cessful fabrication of single-layer film by mechanical exfo-
liation a decade ago [1]. This excitement stems from the fact
that graphene provides, among many other interesting prop-
erties, a clean and versatile experimentation platform with
which to test various theories. As a result of research over the
last decade, the basic properties of single-layer and AB-
stacking bilayer graphene have become well understood [2].
Among many graphene characterization techniques, Raman
scattering has proven to be a powerful, non-invasive method

that can probe graphene band structure and subsequently
distinguish single-layer from few-layer graphene [2, 3]. The
strong Raman signal is made possible by graphene’s unique
cone-like band structure and Raman resonance, in which the
energy of an excition laser can always match the graphene
interband transition [3]. As a two-dimensional, atomically
thin film, graphene also provides a new degree of freedom
that is not possessed by other nanostructures: relative rotation
between the graphene layers [4]. Rotationally twisted bilayer
graphene (tBLG) has recently attracted intensive theoretical
and experimental investigations [4–23]. As a result, rotation-
dependent properties, such as the van Hove singularity
[12, 22], G-line resonances [5, 8, 10, 23] and folded phonons,
have been revealed [14, 20, 24, 25]. However, unlike AB-
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stacking graphene, the chemical synthesis of tBLG with a
controlled rotation angle has not been reported; many prop-
erties, especially those of non-commensurate lattices, are yet
to be explored [13, 26–29].

In this letter, we report the observation of a strong 2D
band in tBLG with large rotation angles. In contrast to the
expected two-fold enhancement, due to the doubling of the
sample volume [5], its intensity is about four times as strong
as that of monolayer graphene under visible laser excitation.
We attribute such enhanced intensity to the constructive
Raman interference between the two Raman pathways,
enabled by interlayer coupling and the degenerate Dirac band
in tBLG. The observation of enhanced 2D Raman, as well as
G-line resonances and folded phonons, indicates that twisted
bilayer graphene can be effectively described by the Moiré
superlattice [7, 14, 20, 21, 25]. A more than two-fold
enhancement in the 2D-band intensity in tBLG with large
rotation angles can be found from data in previously pub-
lished papers, but there was no explicit recognition and dis-
cussion about this unusual enhancement [5, 8].

2. Raman results

Twisted bilayer graphene was grown on Cu foils by chemical
vapor deposition (CVD) at ambient pressure in a quartz tube
furnace [15, 25, 30, 31]. The advantage of such CVD gra-
phene bilayers is that they typically contain two single-crystal

domains with relative rotation angles that can be determined
by their edge misorientations; this property facilitates Raman
characterization and interpretation. More descriptions about
growth conditions, rotation angle determination and G-line
resonances can be found in our previous work [15, 25].
Figure 1 shows scanning electron microscopy (SEM) images
of four bilayer graphene samples and their Raman spectra
under 638 nm laser excitation. These samples have increasing
rotation angles from 9 to 16 degrees, and the expected rota-
tion dependent Raman spectra can be clearly seen
[5, 8, 23, 25]. G-line resonances can only be observed in
samples with smaller 9° and 11° rotation angles. The folded
phonon can also be seen in figure 1(b) near 1500 cm−1. In
addition, the 2D intensity has also experienced significant
changes; the integrated intensity increases as the rotation
angle increases, as summarized in figure 2(a).

These rotation-dependent Raman spectra of the G-line
and the 2D band agree with previously reported observations
[5, 8, 10, 23, 25]. However, the unusually strong 2D Raman
intensity was not discussed there; the 2D intensity becomes
more than twice that of the single-layer graphene. This
observation regarding our bilayer graphene with a rotation
angle larger than 20 degrees is general. Figures 2(b), (c) show
typical Raman spectra of two bilayer graphene films with
rotation angles of around 25 degrees. As can be seen, while
the intensity of the G-line in the tBLG is doubled, the 2D
band intensity becomes about four times stronger. As a
comparison, for ‘decoupled artificial’ bilayer graphene made

Figure 1. Raman spectra of single-layer graphene (in black) and twisted bilayer graphene (in red) with rotation angles of 9, 11, 13 and 16
degrees. Insets are scanning electron microscopy (SEM) images. The excitation laser wavelength is 638 nm. The scale bar is 5 μm.
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from simple mechanical stacking by transferring monolayer
graphene twice, the 2D band intensity is approximately twice
the intensity that was observed in single-layer graphene [8], as
shown in figure 2(d). It should be noted that ‘coupled artifi-
cial’ bilayer graphene can be achieved by using a cleaner
stacking procedure such as thermal annealing [5, 8], no
PMMA [5] or no chemical at all [10, 23].

The observation of a stronger 2D band in twisted bilayer
graphene is not limited to 638 nm laser excitation. Figure 3(a)
shows Raman spectra under a 532 nm laser from the same
sample as in figure 2(c). A strong 2D band is also observed,
but when excited by a 364 nm UV laser, a G-line resonance is
observed again, and the 2D band becomes weaker and
broader, as shown in figure 3(b) [25]. It is important to point
out that the peak with a frequency very close to the D-line of
single-layer graphene is not the D-line of the bilayer gra-
phene; instead, it is the folded longitudinal optical (LO)
phonon of the tBLG superlattice. In addition to a good match
between its frequency with the rotation angle [24, 25], the
following observation can also rule out the peak as the D band
of the bilayer graphene: it is red-shifted but the 2D band
shows a blue-shift when compared to the corresponding D
and 2D bands of the single-layer graphene. If this peak is the
D-line of the tBLG, it is expected to shift in the same

direction as the 2D band does. As a matter of fact, both the D
and 2D bands in the previous Raman spectra in figures 1 and
2 exhibit the same blue-shifts in the bilayer graphene.

One general observation in the tBLG with large rotation
angles is the four-fold enhancement of the 2D band, where the
G-line resonances and folded LO phonons were also observed
under the 364 nm UV excitation [25]. Because all of the
samples with small or the large rotation angles were obtained
from the same batch, the Raman measurements were per-
formed under the same conditions, and the only variable
among the samples is the rotation angle, the 2D band Raman
behavior must be a reflection of the rotation-dependent
intrinsic property of the tBLG. Other major factors, such as
strain and doping, have been shown to affect graphene Raman
spectrum, but they can be ruled out in our case. Recent cal-
culations indicate that twisted bilayer graphene does not show
a preferred rotation angle [21]; therefore, the strain is negli-
gible in CVD-grown bilayer graphene. This absence of a
strong strain effect is further supported by the Raman spectra
of the G-line and the 2D band; both the width and the shape
of the G-line remain the same for single-layer and bilayer
graphene [32]. The 2D band does not show spectral broad-
ening or red-shift [33, 34]. Raman mappings in figure 4 fur-
ther show that there is no localized strain in the graphene

Figure 2. (a) Normalized 2D band intensity of bilayer versus single-layer graphene as a function of the rotation angle. (b), (c) Raman spectra
of single-layer (in black) and CVD-grown bilayer (in red) graphene. Insets in (b) and (c) are SEM images of the tBLG with large rotation
angles near ∼25°. (d) Raman spectra of single-layer (in black) and uncoupled artificial bilayer (in red) graphene fabricated by transferring one
monolayer graphene onto another monolayer graphene. ‘2L/1L’ is the 2D band integrated intensity ratio of the bilayer to the single-layer
graphene. The wavelength of the laser is 638 nm. The scale bar is 5 μm.
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bilayer regions, whether they are in AB-stacking graphene or
twisted bilayer graphene. An enhanced 2D band was reported
in suspended single-layer graphene, and it was attributed to a
decreased doping level in the suspended region [35]. This
doping effect can be excluded due to the previously-discussed
lack of a noticeable change in the G-line width, as well as the
blue-shift instead of the red-shift in the 2D band [35].

3. Discussion

The enhanced 2D band intensity in the tBLG is a result of
constructive quantum interference between two Raman
pathways [36–39]. Figure 5 shows a schematic of the band
structures of the tBLG and the representative Raman path-
ways for the 2D double resonance Raman scatterings
[3, 6, 10, 19]. Here, we have assumed that twisted bilayer
graphene forms two-dimensional superlattices, defined by the
Moiré pattern [7, 13, 14, 20, 40]. For comparison, we only
show Raman pathways that involve an interband transition

between the two inner Dirac bands: A→B→D and A→
C→D, as in AB-stacking bilayer graphene [3].

Let’s examine the effect of degenerate pathways on the
Raman intensity of the 2D band. First, we note that there are
two absorption pathways for an incident photon, either
through outer loop interband transition or through inner loop
interband transition Pint, as shown in figure 5. As a result, the
G-line intensity doubles in comparison to the G-line intensity
in single-layer graphene. Let’s consider the contribution of
Pint to the 2D band. Because the Raman pathway after A splits
into PABD and PACD, the total transition amplitude is given by
Pint* (PABD + PACD)/sqrt(2), where sqrt(2) is due to the even
splitting of the incident amplitude at point A. Assuming PABD
and PACD have the same amplitude and phase due to a nearly
degenerate Dirac band [3, 6, 9, 11, 19, 41], the transition
amplitude can be written as Pint*PABD*sqrt(2). Because
Raman intensity is the modular square of the transition
amplitude, the 2D Raman intensity becomes 2*|Pint*PABD|

2,
which is twice the Raman intensity of |Pint*PABD|

2 that is
found in single-layer graphene. When the contribution from
the outer loop is added, we reach the observed four-fold
enhancement of the 2D band in the tBLG.

It should be noted that this Raman quantum interference
is enabled by the unique degenerate Dirac band structure of
tBLG, which has been calculated for twisted bilayer graphene
with a commensurate lattice by many groups [6, 8–11]. In
these cases, the degeneracy of the Dirac band is almost
guaranteed because bilayer graphene becomes a two-dimen-
sional superlattice with larger unit cells. The band structure of
such a superlattice can be constructed by zone folding the
monolayer graphene band structure into a reduced Brillouin
zone. The band below the M point, or G-line resonance, is a
degenerate Dirac band. For twisted bilayer graphene with an
incommensurate lattice, there is no simple general theoretical
description for the band structure. The observation of rota-
tion-dependent folded phonons, however, indicates that
bilayer graphene can be approximated as a Moiré superlattice
[7, 13, 14, 20, 23, 40].

It is important to note that there is a finite gap (∼20 meV
for 13.2 degrees tBLG) between the two Dirac bands [6]. This
band splitting is much smaller than ∼300 meV in AB-stacking
graphene. Besides G-line resonances and folded LO phonons,
the low frequency breathing mode of the tBLG is another
indication of interlayer coupling [42]. It is the finite interlayer
coupling and the finite gap between the Dirac bands that
makes it possible to observe such quantum interference
between two Raman pathways. For a band splitting of
∼20 meV, it is estimated that the Raman peak spacing
between the two paths, shown in figure 5, is on the order of
2–5 cm−1, which is much smaller than the measured ∼40 cm−1

line width of the 2D band [3, 6]. In other words, the two
Raman paths are indistinguishable, which is the necessary
condition for quantum interference. For a larger gap, as in
AB-stacking bilayer graphene, peaks from two Raman path-
ways can be well resolved, and the pathways become dis-
tinguishable, so there is no such quantum interference [3].
When there is no interlayer coupling, as is the case for the
decoupled artificial bilayer graphene, the two graphene layers

Figure 3. Raman spectra of the sample shown in figure 2(c) under
532 nm (a) and 364 nm (b) laser excitations. Single-layer and bilayer
Raman spectra are plotted in black and red, respectively.
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are then independent from each other, and the total Raman
intensity is simply twice that of the single-layer graphene.

Interference phenomena are frequently observed in
Raman spectroscopy [36, 37, 41, 43, 44]. The Raman peak
can be either enhanced or diminished, depending on the
relative contributions from the two Raman paths. The
observation of Raman interference typically requires laser
excitation energy tuning, such that the incident light is in
resonance with two Raman paths simultaneously. The
advantage of graphene is that such a resonance condition is

naturally satisfied in a wide energy range. As such, twisted
bilayer graphene provides us with a unique 2D platform,
which we can use to explore distinctive electronic and optical
phenomena.

4. Conclusions

To summarize, we have observed four-fold Raman enhance-
ment of the 2D band in tBLG under visible laser excitations,
and we have established its correlation with G-line resonances
and folded phonons under UV excitation. The enhancement is
due to Raman quantum interference, enabled by double
resonance and the degenerate Dirac band of the tBLG Moiré
superlattice; this cannot be explained using the theory of
rotated Dirac bands. We expect that such quantum inter-
ference and Raman enhancement can be observed as long as
the laser excitation energy is tuned below the G-resonance of
the twisted bilayer graphene. The unique property of 2D band
Raman allows for the distinction between the twisted bilayer
and the other bilayer graphene. The picture of the bilayer
Moiré superlattice and its associated band structure will help
to reveal more novel properties and applications of twisted
bilayer graphene.
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